All-trans- and 9-cis-retinoic acid: potent direct inhibitors of primitive murine hematopoietic progenitors in vitro

نویسندگان

  • S E Jacobsen
  • C Fahlman
  • H K Blomhoff
  • C Okkenhaug
  • L S Rusten
  • E B Smeland
چکیده

Retinoic acid (RA) stimulates the clonal proliferation of mature bone marrow progenitor cells and inhibits the growth of leukemic progenitors, whereas its effects on normal primitive hematopoietic progenitors have not yet been investigated. This study investigated the ability of all-trans- and 9-cis-RA to modulate the proliferation and differentiation of murine Lin-Sca-1+ bone marrow progenitor cells. Both RA isoforms inhibited in a reversible and dose-dependent fashion, the proliferation of multi- but not single-factor responsive Lin-Sca-1+ progenitor cells. The 50% effective dose was 10 nM for both all-trans- and 9-cis-RA. Maximum inhibition was observed at 100-1,000 nM RA, resulting in a 50-75% reduction in the number of proliferative clones. Lin-Sca-1+ cells with high proliferative potential were preferentially inhibited by RA, resulting in a 80-100% inhibition depending on the hematopoietic growth factors stimulating their growth. The inhibitory effects of RA were directly mediated on the target cell, since the effects were observed at the single cell level. Furthermore, autocrine transforming growth factor beta (TGF-beta) production can probably not account for the observed inhibitory effects of RA, since a TGF-beta neutralizing antibody did not block RA-induced inhibition. Whereas RA, in general, is a differentiation-inducing agent, treatment of Lin-Sca-1+ progenitors resulted in the accumulation of an increased fraction of blasts and immature myeloid cells. Thus, RA inhibits the proliferation as well as differentiation of normal primitive hematopoietic progenitor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Effects of novel retinoic acid compound, 9-cis-retinoic acid, on proliferation, differentiation, and expression of retinoic acid receptor-alpha and retinoid X receptor-alpha RNA by HL-60 cells.

Retinoic acid modulates proliferation and differentiation of a wide variety of normal and leukemic cells through two distinct families of transcriptional factors: the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). A stereoisomer of retinoic acid, 9-cis-retinoic acid, is a high-affinity ligand for RXR and binds efficiently to RAR. In contrast, all-trans-retinoic acid interac...

متن کامل

9-cis-retinoic acid: effects on normal and leukemic hematopoiesis in vitro.

Retinoic acid exhibits effects on the proliferation and differentiation of many hematopoietic cells. Cellular responsiveness to retinoic acid (RA) is conferred through two distinct classes of nuclear receptors, the RA receptors (RARs) and the retinoid X receptors (RXRs). The RARs bind to both 9-cis- and all-trans-RAs, but 9-cis-RA alone directly binds and activates RXR. This suggested that 9-ci...

متن کامل

Isomerization of all-trans-retinoic acid to 9-cis-retinoic acid.

The discovery of the biological activity of 9-cis-retinoic acid raises questions as to its mode of biosynthesis. A simple mechanism involves the direct isomerization of all-trans-retinoic acid to 9-cis-retinoic acid. It is shown here that bovine liver membranes, but not supernatant fractions, can isomerize all-trans-retinoic acid into 9-cis-retinoic acid and 13-cis-retinoic acid. The concentrat...

متن کامل

All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells.

The retinoic acid receptor (RAR) agonist, all-trans retinoic acid (ATRA), is a potent inducer of terminal differentiation of malignant promyelocytes, but its effects on more primitive hematopoietic progenitors and stem cells are less clear. We previously reported that pharmacologic levels (1 micromol) of ATRA enhanced the generation of colony-forming cell (CFC) and colony-forming unit-spleen (C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 179  شماره 

صفحات  -

تاریخ انتشار 1994